1,129 research outputs found

    Distance measures to compare real and ideal quantum processes

    Get PDF
    With growing success in experimental implementations it is critical to identify a "gold standard" for quantum information processing, a single measure of distance that can be used to compare and contrast different experiments. We enumerate a set of criteria such a distance measure must satisfy to be both experimentally and theoretically meaningful. We then assess a wide range of possible measures against these criteria, before making a recommendation as to the best measures to use in characterizing quantum information processing.Comment: 15 pages; this version in line with published versio

    Eye tracking and visualization. Introduction to the Special Thematic Issue

    Get PDF
    There is a growing interest in eye tracking technologies applied to support traditional visualization techniques like diagrams, charts, maps, or plots, either static, animated, or interactive ones. More complex data analyses are required to derive knowledge and meaning from the data. Eye tracking systems serve that purpose in combination with biological and computer vision, cognition, perception, visualization,  human-computer-interaction, as well as usability and user experience research. The 10 articles collected in this thematic special issue provide interesting examples how sophisticated methods of data analysis and representation enable researchers to discover and describe fundamental spatio-temporal regularities in the data. The human visual system, supported by appropriate visualization tools, enables the human operator to solve complex tasks, like understanding and interpreting three-dimensional medical images, controlling air traffic by radar displays, supporting instrument flight tasks, or interacting with virtual realities. The development and application of new visualization techniques is of major importance for future technological progress

    Using error correction to determine the noise model

    Full text link
    Quantum error correcting codes have been shown to have the ability of making quantum information resilient against noise. Here we show that we can use quantum error correcting codes as diagnostics to characterise noise. The experiment is based on a three-bit quantum error correcting code carried out on a three-qubit nuclear magnetic resonance (NMR) quantum information processor. Utilizing both engineered and natural noise, the degree of correlations present in the noise affecting a two-qubit subsystem was determined. We measured a correlation factor of c=0.5+/-0.2 using the error correction protocol, and c=0.3+/-0.2 using a standard NMR technique based on coherence pathway selection. Although the error correction method demands precise control, the results demonstrate that the required precision is achievable in the liquid-state NMR setting.Comment: 10 pages, 3 figures. Added discussion section, improved figure

    Effective minority‐carrier hole confinement of Si‐doped, n+‐n GaAs homojunction barriers

    Get PDF
    he electrical performance of Si‐doped n+‐n GaAs homojunction barriers grown by molecular‐beam epitaxy (MBE) is characterized and analyzed. We employed a successive etch technique to study hole injection currents in GaAs n+‐n‐p+ solar cells. The results of the analysis show that minority‐carrier holes in our MBE‐grown material have a mobility of 293 cm2/V s for an n‐type Si‐doping level of 1.5×1016 cm−3 at 300 K. The interface recombination velocity for these homojunction barriers is estimated to be less than 1×103 cm/s, and it appears to be comparable to that recently observed for Si‐doped n+‐n GaAs homojunction barriers grown by metalorganic chemical vapor deposition. We present evidence that these n+‐n GaAs homojunctions, unlike p+‐p GaAs homojunctions, are almost as effective as AlGaAs heterojunctions in minority‐carrier confinement, and that their electrical performance is not degraded by heavy doping effects

    Clean Positive Operator Valued Measures

    Full text link
    In quantum mechanics the statistics of the outcomes of a measuring apparatus is described by a positive operator valued measure (POVM). A quantum channel transforms POVM's into POVM's, generally irreversibly, thus loosing some of the information retrieved from the measurement. This poses the problem of which POVM's are "undisturbed", namely they are not irreversibly connected to another POVM. We will call such POVM clean. In a sense, the clean POVM's would be "perfect", since they would not have any additional "extrinsical" noise. Quite unexpectedly, it turns out that such cleanness property is largely unrelated to the convex structure of POVM's, and there are clean POVM's that are not extremal and vice-versa. In this paper we solve the cleannes classification problem for number n of outcomes n<=d (d dimension of the Hilbert space), and we provide a a set of either necessary or sufficient conditions for n>d, along with an iff condition for the case of informationally complete POVM's for n=d^2.Comment: Minor changes. amsart 21 pages. Accepted for publication on J. Math. Phy

    Evidence for band-gap narrowing effects in Be-doped, p-p+ GaAs homojunction barriers

    Get PDF
    The electrical performance of Be‐doped, p‐p+ GaAs homojunction barriers is characterized and analyzed. The results of the analysis show that minority‐carrier electrons, at 300 K, have a mobility of 4760 cm2/V s at a hole concentration of 2.3×1016 cm−3, and that the effective recombination velocity for these homojunction barriers is about 6×104 cm/s. We present evidence that this unexpectedly high recombination velocity is a consequence of an effective reduction in band gap due to the heavy impurity doping. The effective band‐gap shrinkage in this Be‐doped material grown by molecular‐beam epitaxy appears to be comparable to that already observed for Zn‐doped GaAs grown by metalorganic chemical vapor deposition. This work demonstrates that so‐called band‐gap narrowing effects significantly influence the electrical performance of GaAs devices

    Surface passivation effects of As2S3 glass on self‐aligned AlGaAs/GaAs heterojunction bipolar transistors

    Get PDF
    A recently developed As2S3 chemical treatment was used to passivate the perimeters of self‐aligned heterojunction bipolar transistors (HBTs). The As2S3chemical treatment significantly lowered the base current resulting in a two order of magnitude reduction in the collector current density at which dc current gain was observed (β=1). No degradation with time has been observed in the electrical characteristics of the chemically treated HBTs. This absence of degradation is attributed to the impermeability to oxygen of the As2S3 glass which coats the perimeter of the HBT after chemical treatment
    corecore